Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle.
نویسندگان
چکیده
During fasting, human skeletal muscle depends on lipid oxidation for its energy substrate metabolism. This is associated with the development of insulin resistance and a subsequent reduction of insulin-stimulated glucose uptake. The underlying mechanisms controlling insulin action on skeletal muscle under these conditions are unresolved. In a randomized design, we investigated eight healthy subjects after a 72-h fast compared with a 10-h overnight fast. Insulin action on skeletal muscle was assessed by a hyperinsulinemic euglycemic clamp and by determining insulin signaling to glucose transport. In addition, substrate oxidation, skeletal muscle lipid content, regulation of glycogen synthesis, and AMPK signaling were assessed. Skeletal muscle insulin sensitivity was reduced profoundly in response to a 72-h fast and substrate oxidation shifted to predominantly lipid oxidation. This was associated with accumulation of both lipid and glycogen in skeletal muscle. Intracellular insulin signaling to glucose transport was impaired by regulation of phosphorylation at specific sites on AS160 but not TBC1D1, both key regulators of glucose uptake. In contrast, fasting did not impact phosphorylation of AMPK or insulin regulation of Akt, both of which are established upstream kinases of AS160. These findings show that insulin resistance in muscles from healthy individuals is associated with suppression of site-specific phosphorylation of AS160, without Akt or AMPK being affected. This impairment of AS160 phosphorylation, in combination with glycogen accumulation and increased intramuscular lipid content, may provide the underlying mechanisms for resistance to insulin in skeletal muscle after a prolonged fast.
منابع مشابه
Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملGlucose infusion causes insulin resistance in skeletal muscle of rats without changes in Akt and AS160 phosphorylation.
Hyperglycemia is a defining feature of Type 1 and 2 diabetes. Hyperglycemia also causes insulin resistance, and our group (Kraegen EW, Saha AK, Preston E, Wilks D, Hoy AJ, Cooney GJ, Ruderman NB. Am J Physiol Endocrinol Metab Endocrinol Metab 290: E471-E479, 2006) has recently demonstrated that hyperglycemia generated by glucose infusion results in insulin resistance after 5 h but not after 3 h...
متن کاملExercise Alleviates Lipid-Induced Insulin Resistance in Human Skeletal Muscle–Signaling Interaction at the Level of TBC1 Domain Family Member 4
Excess lipid availability causes insulin resistance. We examined the effect of acute exercise on lipid-induced insulin resistance and TBC1 domain family member 1/4 (TBCD1/4)-related signaling in skeletal muscle. In eight healthy young male subjects, 1 h of one-legged knee-extensor exercise was followed by 7 h of saline or intralipid infusion. During the last 2 h, a hyperinsulinemic-euglycemic c...
متن کاملبررسی اثرات فلاونوئید کوئرستین بر بیماری کبد چرب غیر الکلی
Background: The prevalence of non-alcoholic fatty liver disease (NAFLD) increased globally. Prevalence of NAFLD in general population estimated as 10-24%. Insulin resistance and fat accumulation in liver cells playing an important role in this disease. Recently usage of antioxidants in prevention and treatment of disease is considered. Quercetin is an antioxidant in flavonoids group. In t...
متن کاملPrior exercise increases phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle.
The main purpose of this study was to determine whether the increased glucose transport (GT) found immediately postexercise (IPEX) or 4 h postexercise (4hPEX) is accompanied by increased phosphorylation of Akt substrate of 160 kDa (AS160, a protein regulator of GLUT4 translocation). Paired epitrochlearis muscles were dissected from rats (sedentary or IPEX, 2-h swim) and used to measure protein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 302 2 شماره
صفحات -
تاریخ انتشار 2012